News image News image News image News image News image News image News image News image

Кремниевый ветер шатает деревья в нанотехническом лесу
Нанотехнологии в технике - Самые маленькие

кремниевый ветер шатает деревья в нанотехническом лесу

Датчики, способные передавать из глубины организма параметры кровяного давления или иные данные, теперь могут быть столь малы, что для них оказываются слишком велики даже самые крошечные батарейки традиционного типа. К счастью, нанотехнологии позволили создать микроскопические генераторы, вырабатывающие ток на месте.

Очередное чудо нанотехнологий держит пинцетом профессор Чжун Линь Ван (Zhong Lin Wang) из технологического института Джорджии (Georgia Tech). Тонкая таблеточка, главная, рабочая часть, которой — это квадратик с поперечником в пару миллиметров, способна выдавать электричество, собирая вибрацию из окружающей среды. Пусть мощность устройства измеряется пиковаттами — для целей авторов аппаратика этого достаточно.

Масса разных электронных приборчиков (вроде медицинских датчиков внутри тела, или датчиков внутри сооружений) нуждается в чрезвычайно компактных почти вечных источниках питания. Где их взять? Наногенератор (Nanogenerator), который создал Линь Ван и его коллеги, может оказаться ответом. Если только преодолеет период детских болезней .

В основе генератора — мириады нанопроводков из оксида цинка. Они являются одновременно и полупроводниками, и пьезоэлектриками. Так что если их слегка согнуть и отпустить — генерируют импульс тока.

Ранее Линь Ван создал ковёр (или лес ) из таких нанопроводков и показал, что при помощи наконечника атомного силового микроскопа можно индивидуально пригибать эти проводки, получая ток.

Заметим, в обычном макромасштабе принцип генерации тока пьезоэлектриками надежд инженеров как-то не оправдал. А в наноизделиях он может оказаться выгодным. Вот только атомный силовой микроскоп — сооружение весьма крупное и массивное. Так что назвать тот прежний наноковрик генератором можно было весьма условно.

Теперь же схема наногенератора обрела законченный вид. Его создатели придумали поместить поверх леса специальный зубчатый электрод из кремния, покрытого тонким слоем платины. На его поверхности выполнили огромное количество выступов, в промежутки между которыми попадают верхушки нанодеревьев . Дальше – просто. Кремниевый электрод вибрирует, отклоняет верхушки нанопроводков в разные стороны (как ветер колеблет верхушки деревьев) и собирает с них электрический ток.

Фиолетовый и тёмно-жёлтый цвет – подложка, синий – гибкие, упругие и герметичные стенки, зелёный – пилообразный электрод, серый – нанопроводки, красный – ультразвук и получаемый ток (иллюстрация с сайта gatech.edu).

О замечательной работе такого своего сандвича его авторы отрапортовали в Science (этот же материал выложил (PDF-документ) и Georgia Tech), а также — в пресс-релизе института.

Устройство помещали в воду и подавали ультразвук. Наноковёр генерировал постоянный ток в 0,4-0,5 наноампера при напряжении примерно 0,5 милливольта.

В качестве подложки для выращивания нанопроводков группа Линь Ван применяла арсенид галлия, сапфир или даже гибкий полимер. Так что подобную нанобатарейку ещё можно сделать и гибкой. К тому же основной материал — оксид цинка — не токсичен, что важно для медицинского применения.

В будущем подобные генераторы могли бы собирать либо имеющуюся в теле энергию (кровяной поток, сокращения мускулов), либо улавливать ультразвуковые колебания, специально посылаемые извне. Таким способом, к примеру, небольшой механизм снаружи, на теле пациента, мог бы одновременно подзаряжать массу нанодатчиков, курсирующих внутри тела.

На этой оптимистичной ноте можно было бы и поставить точку. Но американские учёные честно говорят, что их устройство ещё нуждается в усовершенствовании.

Сейчас, как оценивает Линь Ван, в выработке тока участвуют от 250 до 1 тысячи нанопроводков, что составляет лишь 1% от общего их числа. Увы, учёные не научились ещё выращивать эти самые проводки строго одного размера (длиной в микрометр), да ещё и так, чтобы все они шли параллельно друг другу и равномерно размещались на подложке.

Достижение такого идеала могло бы многократно повысить выходную мощность устройства при тех же размерах. Пока же проводки, которые слишком коротки, просто не достают до верхнего электрода. Те же, что слишком длинны — не могут сгибаться и распрямляться должным образом, чтобы генерировать ток.

Также осталось решить одну важную загадку — почему наногенератор приходит в негодность после часа непрерывной работы? Точного ответа на этот вопрос у исследователей ещё нет. Но деваться некуда. Для устройств таких размеров удобных способов получения энергии можно вспомнить не так уж много.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Применение нанотехнологий

Электроэнергия из тепла человеческого те

News image

Инженеры из Фраунгоферовского института интегральных схем IIS разработали единственный в своем роде трансформ...

Вездесущий графен

News image

Как известно, существует два подхода к синтезу пленок графена большой площади. Первый подход заключается в х...

Химики решили кормить автомобили водород

News image

Учёные наметили ещё один вариант обеспечения автомобилей энергией, который благоприятен с экологической точки зрения и ко...

Нашествие лифтеров

News image

Уже второй год подряд группы энтузиастов со всех концов света собираются для того, чтобы продемонстрировать св...

Как бактерии в недрах Земли влияют на кл

News image

О том, что жизнь существует не только на поверхности Земли и в самом верхнем слое зе...

Углеродные нанотрубки защищают и от воды

News image

Несмотря на замечательные свойства, углеродные нанотрубки (УНТ) пока еще не завоевали рынок. В большинстве случаев он...

Космические каскады. Трехкаскадные арсен

News image

В космических аппаратах применяют два вида солнечных батарей – кремниевые и арсенид-галлиевые на германиевой подложке. Пе...

. Поглощают ли на самом деле растения уг

News image

Растения играют очень важную роль в жизни человека, поэтому остановимся на теории фотосинтеза подробнее. Теория фо...

Новости нанотехнологий

Кремниевые нанотрубки выращивают без применения золота

Кремниевые нанопроволоки помогут уменьшить размеры микрочипов. Ученые из Института Физики микроструктур Макса Планка в Галле впервые разработали нанопроволоки на кре...

Казавшаяся трудноразрешимой задача придания изделиям из

Казавшаяся трудноразрешимой задача придания изделиям из графена желаемой формы оказалась подвластна капелькам воды – о пластичности графеновых наноструктур сообщают химики из...

Влияние полярности электрического поля на рост вертикал

Одно из наиболее перспективных направлений использования углеродных нанотрубок (УНТ) связано с разработкой холодных полевых эмиттеров на их основе. Уникальные особенности та...

Наноальтернатива таблеткам

  Одним из первых медицинских применений нанотехнологии стало разработанное учеными из США быстродействующее лекарство от импотенции, которое сможет соперничать таблетками Частицы препарата ...

Композиты медицинские «MBM — ЛН»

Справка о применении в клинической практике композитного материала «MBM — ЛН» Композитный материал «MBM — ЛН» представляет собой ткань черного цвета. Развитая по...

More in: Технологии, Наноматериалы, Наномедицина, НаноТехника , Новости

Популярные заметки:

Космический лифт и нанотехнологии

От фантастики к реальности КОСМИЧЕСКИЙ ЛИФТ - это лента, один конец которой присоединен к поверхности Земли, а другой находится на...

Бактерии приводят в движение крошечные наномеханизмы

Шестерни в миллион раз более массивные, чем бактерии , говорит главный исследователь Игорь Аронсон. Возможность использовать и контролировать эне...

Нанотрубки научились получать в промышленных масштабах

Углеродные нанотрубки, основу для сверхпрочных материалов, можно будет получать в промышленных масштабах: благодаря изобретению американских химиков их стоимость заметно снизится. Нанотрубка – ...

Создана новая сверхзвуковая технология!

Совместная группа австралийских и американских инженеров успешно протестировала новую сверхзвуковую авиационную технологию, которая, как уверяют ее разработчики, способна полностью изменить по...

Создан первый серийный прибор на органических транзисто

На очередной выставке бытовой электроники CES 2010 в Лас-Вегасе компания Plastic Logic продемонстрировала свою новую разработку – QUE proReader. Это ус...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.