News image News image News image News image News image News image News image News image


Биомолекулярные штекеры для переноса электронов
Нанотехнологии в технике - Самые маленькие

биомолекулярные штекеры для переноса электронов

Растения, водоросли и цианобактерии (сине-зеленые водоросли) — мастера по части использования солнечной энергии, ибо умеют уловленный свет почти полностью превращать в энергию. Это происходит, в том числе, благодаря тому, что высвобожденные фотонами электроны практически в полном составе выводятся из фоторецептора, после чего служат «заводной пружиной» для химических реакций в организме растения. Японские ученые из Национального института передовой промышленной науки и технологии, Токийского университета и Университета Сидзуока придумали, как улавливать и использовать свет с практически такой же эффективностью, о чем рассказали в журнале Angewandte Chemie. Для этого они присоединили молекулярную проволочку непосредственно к биологической фотосинтетической системе, чтобы по этой проволочке отправить высвобожденные электроны на золотой электрод.

КПД фотогальванического преобразования энергии имеет для гелиоустановок решающее значение. Теоретически на один принятый фотон может приходиться один высвобожденный электрон. В то время как эффективность сегодняшних солнечных элементов еще далека от таких значений, природные фотосинтетические системы демонстрируют практически стопроцентную квантовую отдачу. Для того чтобы повысить эффективность искусственных систем, предпринимаются попытки покрывать приемники тонким слоем из биологических фоторецепторов. Тем не менее, транспорт электронов из светочувствительного слоя в электрическую цепь в таких системах настолько неэффективен, что большинство электронов до цели, то есть до электрода, просто не доходит.

Тайна успеха природных фотосистем заключается в удивительно точном сопряжении отдельных компонентов. Молекулы будто подогнаны друг под друга — как в штекерном соединении, благодаря чему электроны передаются напрямую и почти без потерь. В своей новой разработке японские ученые соединили замысловатую фотосистему I (PS I) сине-зеленой водоросли Thermosynechococcus elongatus с искусственно созданной периферией. Важным звеном в цепочке переноса электронов в PS I является витамин K1. Исследователи удалили этот витамин из протеинового комплекса PS I и заменили его рукотворным аналогом. Этот аналог составляют три части: 1) такой же молекулярный «штепсель», которым витамин K1 присоединяется к протеиновому комплексу (нафтохиноновая группа), используется для «втыкания» искусственного соединительного элемента в PS I (как вилка в разъем); 2) молекулярная проволочка (углеводородная цепь) той же длины, что и витамин K1, которая обеспечивает выступание соединительного элемента из протеинового комплекса; 3) на другом конце проволочки находится дополнительная «вилка» (электрохромная виологеновая группа), которая закрепляет весь комплекс на покрытом специальным составом золотом электроде. Высвобождающиеся в PS I под воздействием света электроны направляются по проволочке к виологеновой группе, которая чрезвычайно эффективно переносит их на золотой электрод.

Японские ученые полагают, что применение подобной технологии может позволить другим биокомпонентам также стать основой для тех или иных искусственных систем.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Применение нанотехнологий

Заявленные перспективы применения наноте

News image

В МЕДИЦИНЕ Пожалуй, ни в одной другой отрасли нанотехнологии не смогут найти лучшего применения. Это относится и ...

Нанотехнологии и продовольствие

News image

В докладе постоянного комитета по науке и технике в палате лордов британского парламента, озаглавленном “Нанотехнологии и ...

Наномагнитные метаматериалы – новая техн

News image

Плащ-невидимка в стиле Гарри Поттера стал на один шаг ближе к действительности благодаря разработке команды уч...

Преобразователи энергии

News image

В настоящее время поиск и изучение альтернативных источников энергии являются одними из самых популярных направлений на...

Почему цвет наночастиц может зависеть о

News image

.В наномире изменяются многие механические, термодинамические и электрические характеристики вещества. Не являются исключением и их оп...

Наностенки из NiO

News image

Оксид никеля NiO обладает множеством перспективных применений в термоэлектрических устройствах, газовых сенсорах, электродах, электрохромных пленках, со...

Молекулярные солнечные батареи

News image

В обзоре Hiroshi Imahori Electrophoretic deposition of donor-acceptor nanostructures on electrodes for molecular photovoltaics (J...

Очистка воды через нанотрубки

News image

Нанотехнологии помогут обеспечить питьевой водой регионы мира, страдающие от засухи, а так же области с за...

Новости нанотехнологий

Кремниевые нанотрубки выращивают без применения золота

Кремниевые нанопроволоки помогут уменьшить размеры микрочипов. Ученые из Института Физики микроструктур Макса Планка в Галле впервые разработали нанопроволоки на кре...

Казавшаяся трудноразрешимой задача придания изделиям из

Казавшаяся трудноразрешимой задача придания изделиям из графена желаемой формы оказалась подвластна капелькам воды – о пластичности графеновых наноструктур сообщают химики из...

Влияние полярности электрического поля на рост вертикал

Одно из наиболее перспективных направлений использования углеродных нанотрубок (УНТ) связано с разработкой холодных полевых эмиттеров на их основе. Уникальные особенности та...

Наноальтернатива таблеткам

  Одним из первых медицинских применений нанотехнологии стало разработанное учеными из США быстродействующее лекарство от импотенции, которое сможет соперничать таблетками Частицы препарата ...

Композиты медицинские «MBM — ЛН»

Справка о применении в клинической практике композитного материала «MBM — ЛН» Композитный материал «MBM — ЛН» представляет собой ткань черного цвета. Развитая по...

More in: Технологии, Наноматериалы, Наномедицина, НаноТехника , Новости

Популярные заметки:

Космический лифт и нанотехнологии

От фантастики к реальности КОСМИЧЕСКИЙ ЛИФТ - это лента, один конец которой присоединен к поверхности Земли, а другой находится на...

Новый метод создания электродов для измерения свойств н

Ученые, изучающие физические явления на наноуровне, хорошо знают, что «припаять» контакты к единичной органической молекуле зачастую намного сложнее, чем синтезировать са...

. С ноутбуком без подзарядки

Специалисты Стэнфордского университета (Stanford University), США, под руководством профессора И Куи (Yi Cui) нашли новый способ создания кремниевых анодов литий-ионных ба...

Ученые проложили проводку в клеточной мембране

Ученым удалось передать и получить электрический импульс по клеточной мембране при помощи искусственно созданной нанопроволоки. Созданную ими гибридную систему авторы оп...

Medfield - атомная платформа третьего поколения

Компания Intel с громкого успеха начала освоение платформы для ультрамобильных персональных компьютеров, известных также как нетбуки, и MID-аппаратов – только по...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.