ВОЛС в контексте сравнения удаленных стандартов частоты | |
Новости и технологии - Наноматериалы |
С древнейших времен в качестве носителя информации человек использует в основном акустические волны — звук и электромагнитные волны — свет. Еще в древности люди на расстоянии прямой видимости обменивались сообщениями с помощью условных знаков – сигнальных костров. Звук и свет были и остаются доминирующими средствами передачи информации. В начале 90-х годов XVIII века русский изобретатель И. П. Кулибин и француз К. Шапп независимо друг от друга разработали оптические телеграфные линии, предназначенные главным образом для передачи военных и правительственных сообщений. В России для военно-правительственных целей оптический телеграф связал Петербург со Шлиссельбургом (1824), Кронштадтом (1834), Царским Селом (1835) и Гатчиной (1835). Самая длинная в мире (1200 км) линия оптического телеграфа была открыта в 1839 между Петербургом и Варшавой. Оптический телеграф применялся русскими войсками и в Крымскую войну. Все эти устройства относятся к открытым линиям оптической связи. Использование света в качестве носителя информации позволяет передавать сверхогромные объемы информации со скоростью света в среде. Это и другие достоинства оптической связи поставили перед человеком задачу создания закрытых от внешней среды устройств передачи света на большие расстояния, причем по сложноискривленному в пространстве тракту. Впервые возможность создания световодов была высказана русским инженером В. Н. Чиколевым в 60-х годах XIX столетия. И уже в середине 70х годов XIX столетия В. Н. Чиколев осветил с помощью световодов четыре помещения одного магазина, пороховые погреба крупнейшего по тем временам Охтинского порохового завода, театральную рампу и др. Источником света служила угольная дуга — свеча Яблочкова (ламп накаливания еще не было). Световоды В. Н. Чиколева представляли собой полые металлические трубы, внутренняя поверхность которых была зеркальной. С 1951 в нескольких промышленно развитых странах начались разработки стеклянных волоконных световодов, а примерно с 1960 начались материально-технологическая реализация и применение в приборостроении различных волоконных световодов. В 1954 академики Н. Г. Басов и А. М. Прохоров и американец Ч.Таунс создали первый квантовый генератор на пучке молекул аммиака-мазер. Для реализации уникальных возможностей линий оптической связи на основе ВС были необходимы миниатюрные и легкоуправляемые источники высоконаправленного когерентного квазимонохроматического света, такими характеристиками отличается только излучение лазеров. В 1960 американец Т.Мейман продемонстрировал работу первого оптического квантового генератора — лазера. В качестве активной среды в нем использовался рубин (Al2O3 с примесью хрома Cr), а вместо объёмного резонатора был использован открытый оптический резонатор. Этот лазер работал в импульсном режиме на длине волны в 0,69 мкм. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме. В 1970 г. (год разработки первых ВС со светоослаблением менее 20 дБ/км) академик Ж. И. Алферов с сотрудниками впервые реализовали полупроводниковый лазер на основе двойной гетероструктуры А1Аs — GаАs с непрерывной генерацией при комнатной температуре. Под руководством академика Ж. И. Алферова созданы для ВОЛС также быстродействующие и малошумящие фотоприемники ближней ИК области спектра Свет, проходящий по оптоволокну, подвержен затуханию. Для усиления сигнала используют повторители, которые размещают на некотором расстоянии друг от друга по всей длине ВОЛС. В 1970 расстояние между повторителями составило около 10 км. В 1977 впервые в телефонии был использован трафик передачи информации на скорости 6 Мбит/с. А 1987 ознаменовался коммерческим использованием волокна на скорости 1,7 Гбит/с, расстояние между повторителями составило 50 км. В 1988 был заложен первый трансантлантический кабель, он разрабатывался как первый подводный волоконно-оптический кабель между Соединёнными Штатами и Европой. В 2003 максимальная скорость передачи составила 10,92 Тбит/с (это 273 оптических канала по 40 Гбит/с каждый). 2009 год: мультиплексирование 155 каналов по 100 Гбит/с - передача сигнала со скоростью 15,5 Тбит/с на расстояние 7000 километров. |
Читайте: |
---|