Общая схема проектирования наноробота на базе метода ветвей и границ | |
Нанотехнологии в технике - Технологии |
Общая схема реализации алгоритма включает следующие этапы: Определяется начальное множество G0, которое представляет собой множество всех решений. Для данной задачи в качестве оценки множества будет служить приближенная оценка стабильности всей молекулы, т.е. вероятностная характеристика на основе приближенного расчета всех сил на все атомы. В узлах производится оценка связей между атомами стандартными приближенными методами молекулярных расчетов (либо для еще большего ускорения работы алгоритма их модификациями, которые будут рассмотрены в будущих работах). Исходное множество G0 делится на ряд непересекающихся между собой подмножеств. Принцип разбиения исходного множества на подмножества приведен далее. Для нашего случая, когда необходимо добавить атом или группу атомов к текущей конструкции, количество подмножеств равно количеству возможных пространственных расположений этой добавляемой конструкции по отношению к текущей. На каждом этапе ветвления формируется трехмерная вероятностная матрица, характеризующая приоритеты пространственного соединения к текущей конструкции нового потенциального фрагмента. Эта матрица формируется на основании дробления пространства вокруг потенциальной точки склейки фрагментов конструкции с некоторым шагом . Количество формируемых подмножеств в общем случае, когда отсутствует информация о предпочтительности тех или иных координат составит , а в случае произвольной формы облака допустимых координат , где - скаляры допустимых точек по осям . Для оценки каждого из узлов применяется вектор интегралов вероятностей для всех электронов. Вначале рассчитывается вектор из волновых функций для всех электронов , где - текущее суммарное количество электронов в текущей модели наноробота для узла . А далее рассчитывается непосредственная оценка узла дерева решений на основе вероятности нахождения электрона в некотором микрообъеме на расстоянии r от ядра Помимо данной оценки возможны другие, аналогичные данной, которые могли бы учесть критичность наличия прочных связей между отдельными наиболее важными атомами конструкции, или просто интегральную оценку , где - вектор критических значений связей между атомами. На этом этапе осуществляется расчет оценок для всех подмножеств. В качестве перспективного из всех конкурирующих подмножеств, выбирается подмножество, имеющее минимальную нижнюю оценку. В качестве конкурирующих множеств на этом этапе рассматриваются как вновь образованные подмножества, так и подмножества, отброшенные ввиду неперспективности на предыдущем этапе. Все конкурирующие подмножества переобозначаются. В качестве верхнего индекса используется цифра 2, а нижний индекс определяется порядковым номером этого подмножества среди конкурирующих. Для каждого из конкурирующих подмножеств рассчитываются нижние оценки либо учитываются ранее рассчитанные оценки, и в качестве перспективного выбирается подмножество, имеющее минимальную нижнюю оценку. Процесс ветвления продолжается до тех пор, пока не будет выполнено условие оптимальности. Это условие предполагает завершение добавления всех необходимых фрагментов общей конструкции при соблюдении условия на общую жесткость системы (все вероятности нахождения электронов в нужных областях пространства равны 1). Физическая трактовка ветвленияНа некотором текущем этапе в нашей конструкции есть некоторое текущее множество атомов (в самом начале нет ни одного атома или некоторые априорные жесткие конструкции, которые необходимо нарастить, например, углеродные нанотрубки, или набор шестеренок для манипуляторов наноробота, двигатель). Текущее множество атомов на текущем этапе в общем случае не обязано быть стабильным само по себе (в этом случае его целостность в реальности должно поддерживаться искусственно, что потребует применения спецаппаратуры или путем временной склейки текущей структуры с каким-нибудь хим. элементами, с последующим удалением всего лишнего). В целом же для более быстрой сборки конструкции более привлекательно (но менее реально) выглядят структуры, которые стабильны и без отдельных частей (к таким структурам в основном относятся полимеры). На этапе ветвления есть некоторое множество атомов (не меньше одного в общем случае, но возможны и попытки приклеить к текущей конструкции некоторые заранее известные своей пользой хорошие элементы - например те же шестеренки, лифты электронов и т.п.). Сам процесс принятия решения о попытке добавления в текущую структуру новых элементов (с соответствующим ветвлением дерева решений и затратами на расчеты) представляет собой отражение априорных взглядов проектировщика на общую схему будущего наноробота (например, двигатель, пара наноманипуляторов, капсула с лекарством) Однако даже приведенный алгоритм, несмотря на предварительно показанное улучшение сходимости, нуждается в создании новой сети распределенных вычислений. Это связано с тем, что даже полиномиально сходящийся алгоритм требует времени для создания базы данных молекулярных структур (фрагментов нанороботов). А пока подобные базы и технологии остаются доступными в основном западным организациям. Также нужно, к сожалению, констатировать, что российские проекты таких распределенных сетей остаются пока только проектами. |
Читайте: |
---|