News image News image News image News image News image News image News image News image

Имитация кимберлита
Нанотехнологии как наука - Наноматериалы

имитация кимберлита

Алмаз — абсолютно незаменимый материал в самых разных областях человеческой деятельности, начиная от ювелирной и обрабатывающей промышленности и заканчивая электронной и космической. И все это — благодаря его уникальным свойствам: твердости и износостойкости, большой теплопроводности и оптической прозрачности, высокому показателю преломления и сильной дисперсии, химической и радиационной стойкости, а также возможности его легирования электрически и оптически активными примесями. Крупные и особо чистые природные алмазы — большая редкость, поэтому неудивительно, что успешные попытки их производства вызывают огромный интерес.

Всегда в цене

Высокая цена на эти камни объясняется не только их особыми характеристиками, но и уровнем монополизации в торговле: Международная корпорация «Де Бирс», контролирующая 70—80% поставляемых на рынок природных алмазов, уже более столетия удерживает на них известные цены. Освоение во второй половине XX века промышленного производства технических и ювелирных аналогов, казалось бы, должно было снизить стоимость самых твердых и красивых камней на Земле, однако этого не случилось. Стоит сразу уточнить, что тоннами сегодня выращивают только мелкие камни диаметром до 0,6 мм, используемые в качестве сырья для изготовления абразивного инструмента. И цены на них действительно несколько упали после освоения данной технологии и составляют около 10 центов за карат. Однако никакого обвала цен на ювелирные алмазы пока не предвидится, поскольку их выращивание обходится довольно дорого.

Вместе с тем природные алмазы не могут полностью удовлетворить потребности науки, техники и промышленности. Скажем, инструментальной, металло - и камнеобрабатывающей отраслям нужно примерно в 4 раза больше алмазов, чем их добывается из земли. А в ряде высокотехнологичных областей — при изготовлении оптических окон, элементов пассивной и активной электроники, датчиков ультрафиолетового и ионизирующего излучения природное сырье зачастую использовать нельзя.

В первую очередь это связано с тем, что разброс физических свойств природных кристаллов алмаза очень широк — и это во многом исключает возможность их применения в серийных изделиях и приборах, чувствительных к свойствам используемого материала. Другой проблемой является то, что подавляющее большинство природных кристаллов алмаза (примерно 98%) содержит в качестве примеси азот (1 атом азота на 1 000— 100 000 атомов углерода), наличие которого сказывается на свойствах алмаза. Еще одна незадача возникает из-за несовершенства кристаллической структуры добываемых кристаллов и неравномерного распределения примесей.

Всего лишь углерод

С давних пор алмаз считали чудодейственным камнем и могущественным талисманом. Полагали, что человек, носящий его, сохраняет память и веселое расположение духа, не знает болезней желудка, на него не действует яд, он храбр и верен.

Трудно представить, что самый твердый из известных природных материалов является одной из полиморфных (отличающихся расположением атомов в кристаллической решетке) модификаций углерода, другая модификация которого — графит, мягкое вещество, использующееся в качестве смазки и грифелей для карандашей.

В алмазе, имеющем кубическую структуру, каждый атом углерода окружен четырьмя такими же атомами, которые образуют правильную четырехгранную пирамиду. Графит же имеет слоистую структуру, в которой прочные связи между атомами углерода существуют только внутри слоя, где атомы образуют гексагональную сетку. Связь же между отдельными слоями очень слабая, поэтому они могут легко скользить относительно друг друга и остаются на бумаге в виде микрочешуек, когда мы пишем карандашом.

Физика роста

Люди всегда хотели сделать алмаз более доступным: то есть не добывать его в копях, а получать лабораторным способом, причем желательно — дешевым.

Первые документально зафиксированные опыты над алмазами относятся к 1694 году. Именно тогда флорентийские ученые Аверани и Тарджиони продемонстрировали с помощью зажигательного стекла, что алмаз горит, если его нагреть до достаточно высокой температуры. На протяжении последующих веков велись непрерывные эксперименты по исследованию самого прочного в мире минерала (И. Ньютон, А. Лавуазье, С. Теннант, Х. Дэви, М. Фарадей, Г. Розе), после которых стало ясно, что «величайшая драгоценность» в химическом отношении полностью аналогична графиту, углю и саже. Экспериментаторы, разумеется, пытались получить эту «драгоценность» из указанных веществ (В. Каразин, Б. Хэнней, К. Хрущов, А. Муассан). Однако по причине почти полного отсутствия информации о физико-химических свойствах алмаза и графита и несовершенства техники того времени цель так и не была достигнута.

Лишь в 1939 году молодой сотрудник Института химической физики АН СССР Овсей Лейпунский выполнил расчет линии равновесия графит-алмаз. Эта работа впервые обозначила возможные способы промышленного получения камня. Лейпунский рассчитал оценочные значения давления и температуры, необходимые для осуществления превращения графита в алмаз. Впоследствии его расчеты были несколько уточнены и подтверждены экспериментально.

Следующим этапом на пути к решению проблемы получения алмаза явилась разработка аппаратуры, обеспечивающей создание и поддержание в течение длительного интервала времени необходимых высоких давлений и температур. Большой вклад в развитие техники высоких давлений был внесен Нобелевским лауреатом Перси Бриджменом, разработавшим принципы действия аппаратов высокого давления.

Цена бриллианта

Бриллианты (ограненные алмазы) оцениваются по четырем главным CCCC критериям (так называемая система 4’C): цвет (color), качество (clarity), огранка и пропорции (cut), вес в каратах (carat weight). Наиболее ценны те, что имеют так называемый «высокий» цвет, а в действительности являются бесцветными.

Наличие даже едва заметного и незначительного, на взгляд неспециалиста, оттенка желтого, коричневого или зеленого цвета (называемого ювелирами «нацветом») может серьезно понизить стоимость камня. У бесцветных алмазов выше всего ценится круглая огранка (бриллиант в этом случае имеет 57 граней), позволяющая максимально выявить блеск и игру камня (так называемый «огонь»). Максимальная стоимость бриллианта весом 1 карат сегодня составляет $18 000.

Наиболее часто камни такого же веса имеют менее высокий цвет и качество, и их стоимость — $5 000— $8 000. Чемпионами по стоимости в мире бриллиантов являются окрашенные в красный, голубой, розовый, зеленый и оранжевый цвета камни. Цена на розовые и голубые может превосходить стоимость бесцветных аналогичного веса и качества в 10 и более раз, а самым дорогим (за карат) за всю историю бриллиантом является камень красного цвета весом 0,95 карата, проданный в 1987 году на аукционе Christie’s за 880 000 долларов США. Единого прейскуранта цен для цветных камней не существует, и, как правило, они формируются на аукционных торгах.

Методом температурного градиента

Многолетние усилия ученых и конструкторов завершились в 1953— 1954 годах успешными опытами по выращиванию алмаза. Успеха добились исследовательские группы компаний ASEA (Швеция) и General Electric (США). Полученные образцы были очень далеки от совершенства и имели размер менее 1 мм.

Шведы и американцы использовали схожие технологии — графит в смеси с металлом (растворителем углерода) помещался в твердую сжимаемую среду. Необходимое давление (70 000—80 000 атмосфер) создавалось мощным гидравлическим оборудованием. Нагрев осуществлялся до температур 1 600—2 500°С в течение двух минут.

Кристаллизация алмазов происходила за счет того, что расплав металла (железо) при высоком давлении и температуре оказывается ненасыщенным углеродом по отношению к графиту и пересыщенным по отношению к алмазу. При таких условиях термодинамически выгоднее оказывается образование алмаза и растворение графита. Получаемое в настоящее время по данной технологии сырье — это преимущественно алмазные порошки с размером зерна 0,001—0,6 мм (максимально 2 мм) и концентрацией азота более 1019 атомов/см3.

В начале 60-х годов советские ученые Б. Дерягин и Б. Спицын и независимо от них американец В. Эверсол предложили принципиально иной CVD-способ получения алмаза, не требующий использования больших давлений. Суть его состоит в том, что углеродсодержащий газ (например, метан) в смеси с водородом и кислородом разлагают при атмосферном или пониженном давлении, и атомы углерода осаждаются на поверхности затравочных кристаллов алмаза, что приводит к их росту. Однако получаемые кристаллы имели ограничения по качеству.

Несмотря на определенные успехи в деле выращивания алмазов, оставалась одна нерешенная задача — получение крупных монокристаллов ювелирного качества. Лишь в 1967 году Роберт Венторф запатентовал способ («метод температурного градиента»), позволивший решить данную проблему.

Движущей силой кристаллизации алмаза в этом методе является перепад концентрации растворенного в металле углерода, обусловленный разностью температур в реакционном объеме. Источник углерода располагают в наиболее горячей зоне, а алмазную затравку (кристалл алмаза размером около 0,5 мм) в области с более низкой температурой. Металлрастворитель плавится и насыщается углеродом. Однако степень насыщения из-за разницы температур будет неравномерной. Равновесная концентрация углерода в расплаве на границе раздела расплав — источник углерода будет выше, чем на границе раздела расплав — алмазная затравка.

Возникающий градиент концентрации приводит к диффузии углерода от источника к затравочным кристаллам, у которых расплав оказывается перенасыщенным — из него происходит осаждение углерода, вызывающее рост алмазного кристалла-затравки. Это очень остроумный метод, основанный на хорошем понимании того множества процессов, которые происходят в термодинамически неравновесных средах, — в данном случае перепад температур одновременно обеспечивает доставку нужного для роста алмаза углерода и гарантирует его осаждение на затравку.

Тиснумит — крепкий орешек

При огранке и полировке алмазов используют абразивные порошки из того же самого алмаза. Одинаковая твердость абразива и обрабатываемого материала создает определенные проблемы при таких работах. У алмаза, как и у большинства кристаллов, разные грани имеют неодинаковую твердость. Труднее всего поцарапать так называемую грань (111), на которой атомы углерода расположены наиболее плотно.

Именно при обработке поверхностей, параллельных данной кристаллографической грани, у ювелиров и технологов возникают особые трудности. Технологи ищут пути повышения твердости выращиваемых алмазов путем целенаправленного их легирования различными примесями, а также пытаются синтезировать вещества покрепче самого минерала. Уже более 10 лет в научных кругах обсуждаются углеродные материалы, получаемые при высоких давлениях и температурах из молекул фуллерена С60.

Среди синтезируемых кристаллических и аморфных структур особо интересна модификация фуллерита с большой долей «алмазоподобных» межатомных связей — до 80%. Остальная часть химических связей в этом веществе более прочная, чем алмазная, и подобна той, что соединяет атомы в плоскостях графита, в молекуле С60 и стенках углеродных нанотрубок. Структура расположения атомов углерода в этом состоянии обеспечивает изотропность его механических свойств и отсутствие так называемых «легких» плоскостей скалывания, имеющихся у кристаллов алмаза. Как полагают, именно такая «рваная» и сильно напряженная кристаллическая структура и обеспечивает данному материалу твердость выше, чем у знаменитой грани (111) алмаза.

Этот материал, названный «тиснумит», уже нашел применение в сверхпрочных наконечниках зондовых сканирующих микроскопов NanoSkan («Вокруг света» № 6, 2005). Недавно ученые из Германии открыли новый вариант алмазоподобной структуры: агрегированные алмазные наностержни (Aggregated Carbon NanoRods), с плотностью и твердостью на несколько процентов большими, чем у обычного кристаллического алмаза. Ожидается, что такой материал ACNR найдет применение в различных нанотехнологиях.

Открытие Луи

Первоначально людей в алмазе привлекала только его необычайная твердость, и ценился он ниже некоторых других минералов. Лишь в середине XV века придворный ювелир герцога Бургундии Карла Смелого знаменитый Луи ван Беркем придумал первый вариант так называемой бриллиантовой огранки, позволившей достаточно полно выявить блеск и игру цветов алмаза. Яркий блеск ограненного алмаза обусловлен его высоким показателем преломления (2,42), а разноцветная игра — сильной дисперсией (способностью кристалла разлагать белый свет на отдельные спектральные составляющие).

Технологический прорыв

Первые алмазы ювелирного качества с помощью метода температурного градиента были получены в 1970 году в компании General Electric. За одну неделю под давлением 55 000— 60 000 атмосфер и 1 450°С при градиенте в 30 градусов были выращены кристаллы массой 1 карат и длиной 5 мм. Однако рукотворные камни по стоимости производства превосходили природные аналоги.

Постепенно аппаратура и методы получения крупных монокристаллов совершенствовались. В настоящее время можно выделить две наиболее распространенные технологии: выращивание алмаза из углеродсодержащей газовой смеси и кристаллизация в условиях высоких статических давлений и температур. Оба метода позволяют создавать крупные и структурно совершенные кристаллы и управлять их химическим составом.

В последнее время широкое распространение получил метод роста алмаза из газовой фазы, активированной микроволновым излучением. При этом углеродсодержащий газ (например, метан) в смеси с водородом ионизируется, попадая в зону действия излучения, создаваемого сверхвысокочастотным генератором. Из образовавшейся плазмы, содержащей атомарный углерод, происходит его осаждение на подложку, где и растет сам кристалл. В качестве подложки для получения монокристаллов используются пластины из выращенного или природного алмаза. Температуру подложки за счет нагрева плазмой поддерживают в диапазоне 800°— 1 000°C. Параметры процесса должны строго контролироваться, поскольку все они, включая кристаллическое совершенство подложки, ее температуру и соотношение ионов в плазме, сильно влияют на качество растущего алмаза. Большинство получаемых по данной технологии кристаллов имеет коричневатый оттенок и требуют последующей термообработки для улучшения цвета.

Самыми известными компаниями, использующими данную технологию, являются: Element Six, Apollo Diamond (США), Геофизическая лаборатория Института Карнеги (США). Представители последнего в 2004 году сообщили о выращенном ими бесцветном монокристалле алмаза массой 10 карат (2 грамма), высотой 12 мм и достигнутой скорости роста ~0,1 мм/ч, то есть данный образец вырос за 5 суток.

Другая технология использует метод температурного градиента и прессовое оборудование, позволяющее поддерживать продолжительное время давление порядка 5—6,5 ГПа при температуре 1 350°—1 800°C. Выращиванием крупных монокристаллов алмаза ювелирного качества по данной технологии занимается ряд промышленных компаний и научных институтов по всему миру: De Beers, Sumitomo Electric Industries (Япония), Gemesis (США), а также несколько предприятий и лабораторий в России (Новосибирск, Москва, Троицк), Белоруссии и Украине.

Большинство получаемых ими кристаллов (желтые, желто-коричневые алмазы) содержат в своей кристаллической решетке значительное количество одиночных атомов азота. Азот растворяется в расплавленном металле и активно захватывается растущим кристаллом. Привлекательность азотсодержащих кристаллов для выращивания обусловлена тем, что при прочих равных условиях скорость их кристаллизации существенно выше, чем скорость роста высокочистых по азоту монокристаллов алмаза.

К настоящему времени самым крупным рукотворным азотсодержащим алмазом является кристалл технического качества (из-за наличия крупных металлических включений) весом 34,8 карата (~7 грамм), выращенный в исследовательском центре компании De Beers за 600 часов, то есть 25 дней.

Разворачивание рентабельного промышленного производства крупных (более 10 карат) алмазов ювелирного качества сегодня вполне реально. Однако угрозой мировым продажам бриллиантов такое производство, скорее всего, не станет, поскольку ему найдут иное научно-технологическое применение, оставив цены на бриллианты на должном уровне. Кроме того, себестоимость добычи природных камней и производства алмазов в прессах не слишком сильно отличается, а количество пригодных для огранки искусственных камней пока и близко несопоставимо с количеством алмазов, добываемых из недр.

Химическая обработка

В ювелирной промышленности широко применяется способ кислотной обработки алмазов и бриллиантов. Процесс проводится в автоклавах, покрытых танталом, и заключается в кипячении алмазов в смеси соляной и азотной кислот при температуре 200°—250°С и давлении 0,5—1,0 МПа в течение 1—5 часов. В некоторых случаях для доступа кислот к закрытым включениям в алмазе при помощи лазера прожигаются каналы. Затем эти полости заполняют затвердевающими прозрачными жидкими и гелеобразными веществами, имеющими коэффициент преломления, близкий к коэффициенту преломления алмаза.

Радиационная обработка

В 1905 году, вскоре после открытия явления радиоактивности, английский ученый Уильям Крукс, будущий президент Лондонского королевского общества, обнаружил изменение окраски кристаллов алмаза, контактировавших с бромидом радия. В настоящее время для облучения алмазов используются ускоренные электроны с энергией 2—4 МэВ (кристаллы, подвергнутые данной обработке, не являются радиоактивными). Получаемые цвета колеблются от зелено-голубого до черного. В дальнейшем, после облучения, подвергнув алмазы нагреву в бескислородной среде до 700°—1 100°С, возможно более широкое изменение их цвета до зеленого, желтого, голубого, розового, красного, фиолетового и черного.

Термобарическая обработка

На воздухе при атмосферном давлении алмаз начинает превращаться в графит при 750—850°С. Однако, размещая образец алмаза в рабочем пространстве аппарата высокого давления, его можно нагреть до 1 800°—2 500°С (не боясь, что он целиком превратится в графит) и тем самым повлиять на окраску кристалла. Такая технология, используемая в подмосковном Троицке, позволяет из менее привлекательных коричневых природных кристаллов делать бесцветные, розовые, зеленые, желтые, оранжевые и голубые алмазы.

Следы вмешательства

Следует заметить, что кристаллы, подвергнутые любой из «облагораживающих» обработок, могут быть распознаны при наличии необходимого оборудования и достаточной квалификации персонала, так же как и искусственные алмазы, выращенные в лабораторных условиях. Компания «Де Бирс», устанавливающая порядки в ювелирной промышленности, очень внимательно относится к возможной конкуренции со стороны промышленно выращиваемых алмазов. Ее специалисты разработали ряд приборов и методик для определения параметров — где, как и из чего был изготовлен тот или иной бриллиант. Так что выдать выращенный алмаз за природный почти невозможно. Делая ставку на природное сырье, «Де Бирс» полагает, что в ближайшие десятилетия ей удастся удержать высокие цены на свои изделия, в частности благодаря тому, что они будут гарантированно настоящие…

Управляемый синтез

Однако уникальные свойства алмаза в полной мере проявляются лишь в так называемых «малоазотных» кристаллах (содержание азота менее 1018 атомов/см3). Предотвратить вхождение атомов азота в решетку алмаза можно путем введения в ростовую среду дополнительных веществ, так называемых «геттеров» азота (титана, циркония, алюминия), связывающих азот в устойчивые нитриды. Однако при этом, как правило, идет параллельное взаимодействие геттеров с углеродом и образование карбидов, которые активно захватываются растущим кристаллом в виде макро - и микровключений и ухудшают его качество.

Данная проблема решается путем подбора элементов конструкции той части установки высокого давления, где происходит рост кристалла, и оптимизацией термодинамических условий роста (давление, температура) и скорости кристаллизации. В настоящий момент максимальный темп роста «особо чистых» монокристаллов алмаза составляет 6—7 мг/ч, а получаемые кристаллы могут иметь вес 7—9 каратов (1,4—1,8 грамма).

В процессе роста также возможно управляемое легирование кристалла оптически и электрически активными примесями (азотом, бором), входящими в решетку алмаза и замещающими в ней отдельные атомы углерода. Наиболее часто алмаз легируют бором, отвечающим за голубую его окраску и полупроводниковые свойства.

Созданные в подмосковном городе Троицке технологии выращивания крупных монокристаллов алмаза (весом до 5 каратов) позволяют управлять концентрацией примесного азота в диапазоне от 1019 до 1016 атомов/см3 и выращивать полупроводниковые монокристаллы p-типа с широким диапазоном удельного электрического сопротивления — от 0,1 до 1013 Ом.см. Возможно также получение слоистых алмазных структур с изменяющимися по толщине оптическими и электрофизическими свойствами. Из выращиваемого сырья изготавливают алмазные наковальни, позволяющие вести исследования свойств веществ и фазовых переходов в них при сверхвысоких давлениях до 2,5 Мбар (около 2,5 миллиона атмосфер). А также производят оптические окна для особо мощных лазеров, высокочувствительные датчики температуры, малоинерционные нагревательные элементы, иглы для сканирующих зондовых микроскопов, датчики ультрафиолетового, рентгеновского и радиационного излучений.

Выращиваемые сегодня в лабораторных и промышленных масштабах сверхчистые и легированные заданными примесями монокристаллы алмаза стоят существенно дороже природных образцов и производятся не для того, чтобы делать из них бриллианты. Особый интерес к данному материалу в последнее время обусловлен не только потребностями экспериментальной физики, но и наметившейся возможностью разработки алмазной электроники. Алмазные микросхемы пока живут только в мечтах физиков-теоретиков, но реальные технологи-практики активно работают над тем, чтобы выращенные в лабораториях ученых кристаллы алмаза были не только чистой воды, но и заданной полупроводящей микроструктуры.

Природные автоклавы

Зарождались и росли алмазы миллиарды лет назад на глубинах в 150—200 км под воздействием высоких температур и давлений. Условия для их роста, как правило, сохранялись в течение нескольких миллионов лет, а затем нарастающее давление выбрасывало их ближе к земной поверхности. После чего они либо оставались на месте (в «коренных» месторождениях), либо под действием ветра и воды извлекались из породы и накапливались во вторичных (россыпных) месторождениях.

До середины XX века основная добыча алмазов приходилась на россыпные месторождения. Их гораздо легче было искать и разрабатывать. Однако эти месторождения, как правило, мелкие и быстро истощаются. После 1990 года более 75% мировой добычи алмазов стало приходиться на долю коренных месторождений, так называемых кимберлитовых трубок. Эти конусообразные, суживающиеся книзу залежи породы выступали своеобразным транспортером, доставляющим алмазы на поверхность земли. Площадь выхода кимберлитовых тел на поверхность различна.

Самая крупная кимберлитовая трубка «Мвадуи» в Танзании имеет поперечник ~1—1,5 км. Глубина разработки трубок доходит до 1 км. Однако далеко не все кимберлитовые трубки являются алмазоносными. Рентабельны только те, в которых содержание алмазов составляет 0,5—5 каратов (0,1—1,0 грамма) на одну тонну породы. Подавляющая часть алмазов обычно имеет размер от долей миллиметра до 4—5 мм, и их масса меньше карата (0,2 грамма).

Бесценные копи

В настоящее время добыча минералов ведется в 26 странах мира, крупнейшими из которых являются Россия, Ботсвана и ЮАР. Ежегодно в мире добывается в среднем 100—110 млн. каратов (20 тонн). В последние годы Россия вышла на первое место по добыче природных алмазов и на второе по их суммарной стоимости. По данным Минфина, объем добычи алмазов в России в первом полугодии 2004 года составил 17,7 млн. карат при средней цене 51 доллар за карат (0,2 грамма). Экспорт необработанных природных алмазов с территории РФ за январь—сентябрь 2004 года составил 23,6 млн. каратов. Доля ювелирных алмазов составляет 20—25%. Основная масса (75—80%) добываемых камней — так называемые технические. Алмазы данной категории благодаря своим высоким абразивным качествам нашли широкое применение в обрабатывающей и бурильной промышленности. Самый большой ювелирный алмаз в мире — «Куллинан», массой 3 106 карат (621,2 грамма), размером 5,5х10х6,5 см, был найден в 1905 году в Трансваале (ЮАР). Впоследствии из него было изготовлено 9 крупных бриллиантов (самый большой «Звезда Африки» — 530,2 карата) и 96 мелких. В процессе огранки было потеряно 66% исходной массы кристалла.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Применение нанотехнологий

Наноматериал - не мокрый даже под водой

News image

Химики в Университете Цюриха разработали новую ткань, которая не намокает даже при полном погружении в воду...

Ученые впервые смогли зафиксировать рост

News image

Платиновые наночастицы Поэтому работа Пола Аливисатоса и его коллег чрезвычайно важна не только для физики твердого те...

Один из способов разбогатеть Добыча редк

News image

Ушли в прошлое времена золотой лихорадки, с легкой добычей, в виде крупных самородков, давно иссяк Кл...

Молекулярные солнечные батареи

News image

В обзоре Hiroshi Imahori Electrophoretic deposition of donor-acceptor nanostructures on electrodes for molecular photovoltaics (J...

Нашествие лифтеров

News image

Уже второй год подряд группы энтузиастов со всех концов света собираются для того, чтобы продемонстрировать св...

Химический слой спасёт ваши носки от нам

News image

Практически любую поверхность или ткань можно сделать водонепроницаемой, но в то же время позволить ей ды...

Химики предлагают новый метод очистки во

News image

Очистка водорода необходима перед его применением в качестве топлива для топливных элементов, но существующие методы не...

Очистка воды через нанотрубки

News image

Нанотехнологии помогут обеспечить питьевой водой регионы мира, страдающие от засухи, а так же области с за...

Новости нанотехнологий

Кремниевые нанотрубки выращивают без применения золота

Кремниевые нанопроволоки помогут уменьшить размеры микрочипов. Ученые из Института Физики микроструктур Макса Планка в Галле впервые разработали нанопроволоки на кре...

Казавшаяся трудноразрешимой задача придания изделиям из

Казавшаяся трудноразрешимой задача придания изделиям из графена желаемой формы оказалась подвластна капелькам воды – о пластичности графеновых наноструктур сообщают химики из...

Влияние полярности электрического поля на рост вертикал

Одно из наиболее перспективных направлений использования углеродных нанотрубок (УНТ) связано с разработкой холодных полевых эмиттеров на их основе. Уникальные особенности та...

Наноальтернатива таблеткам

  Одним из первых медицинских применений нанотехнологии стало разработанное учеными из США быстродействующее лекарство от импотенции, которое сможет соперничать таблетками Частицы препарата ...

Композиты медицинские «MBM — ЛН»

Справка о применении в клинической практике композитного материала «MBM — ЛН» Композитный материал «MBM — ЛН» представляет собой ткань черного цвета. Развитая по...

More in: Технологии, Наноматериалы, Наномедицина, НаноТехника , Новости

Популярные заметки:

Космический лифт и нанотехнологии

От фантастики к реальности КОСМИЧЕСКИЙ ЛИФТ - это лента, один конец которой присоединен к поверхности Земли, а другой находится на...

Бактерии приводят в движение крошечные наномеханизмы

Шестерни в миллион раз более массивные, чем бактерии , говорит главный исследователь Игорь Аронсон. Возможность использовать и контролировать эне...

Химический слой спасёт ваши носки от намокания

Практически любую поверхность или ткань можно сделать водонепроницаемой, но в то же время позволить ей дышать – благодаря бывшей военной те...

Кто вырастет: прямая нанотрубка, скрученная нанотрубка

Дело в том, что в результате приготовления образцов для просвечивающей электронной микроскопии они постоянно перемешиваются, и иногда бывает затруднительно определить в ...

Создан первый серийный прибор на органических транзисто

На очередной выставке бытовой электроники CES 2010 в Лас-Вегасе компания Plastic Logic продемонстрировала свою новую разработку – QUE proReader. Это ус...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.