News image News image News image News image News image News image News image News image

Нанотехнологии и переход к водородной энергетике
Энциклопедия - Нано - сегодня

Если рассмотреть «водородные программы» правительств разных стран, становится видно, что их целью является достижение «технологической готовности» такого уровня, на котором станет возможным принимать решения о коммерциализации этой технологии и сателлитных разработок в масштабах промышленности.

На достижение столь амбициозных целей отпущено крайне мало времени: в качестве дат полного перехода к повсеместному использованию водородного топлива называются 2015, 2020 и 2025 гг. Нанотехнологии могут существенно помочь разработкам в этом направлении, поскольку уже сейчас предоставляют решения для каждого из трех ключевых аспектов водородной энергетики – производства водорода, его хранения и создания эффективных топливных ячеек.

Чтобы избежать терминологической путаницы, заметим, что «водородный автомобиль», о котором идет речь в настоящей статье - это не автомобиль с двигателем внутреннего сгорания, использующим в качестве горючего водород или смесь водорода с природным газом. Имеется в виду «водородный автомобиль» как машина с электрическим приводом, где химическая энергия топлива напрямую преобразуется в электрическую энергию, без механических или тепловых процессов. Чистый выхлоп – тепло и вода.

Первая существенная проблема, которую необходимо решить для перехода на водородную основу – это собственно производство водорода. Топливные ячейки на водороде заряжаются водородом через преобразование жидких топлив (бензин, этанол, метанол) в водород прямо внутри самой ячейки, либо используют водород, произведенный где-то в другом месте и хранящийся в баке автомобиля.

Второй способ влечет за собой серьезную инфраструктурную задачу: поскольку пока еще не существует заправочных станций с водородной колонкой, их потребуется построить, а также создать и отладить всю логистическую цепочку – от завода по выработке водорода до бака автомобиля.

Производство водорода может осуществляться с использованием самых разных источников. Наиболее экологически чистые технологии находятся довольно далеко в стороне от главного направления разработок. Эти технологии используют возобновляемую энергию для обеспечения электричеством процесса электролиза воды, получая в итоге водород и кислород.

Технологией с самым высоким уровнем отходов является газификация угля. Как минимум до того времени, когда будут разработаны высокоэффективные способы захвата и отделения углерода. Разумеется, еще можно использовать атомную энергию для обеспечения электролизных станций электричеством – АЭС строятся, и на обеспечение безопасности эксплуатации этих станций тратится много усилий.

Если взять в качестве примера США, чей «водородный комплекс» можно считать одним из самых передовых, и попытаться выяснить, каким способом получают водород в этой стране, то получается следующая картина. Порядка 95 % производимого на сегодняшний день в США водорода (это составляет около 50 % мирового производства) – порядка 9 млн. тонн ежегодно – производится из метана при помощи высокотемпературного пара.

Становится понятно, зачем нефтяникам водородные технологии. Пока политики и энергетики говорят о «чистом будущем», которое наступит в эру водородной экономики, технологический маршрут Министерства энергетики США в данном направлении предусматривает подавляющее большинство – 90 % – водородной генерации на основе ископаемых энергоносителей – угля, газа и нефти – с дополнительной опорой на атомные электростанции.

Другими словами, выбросы парниковых газов останутся на прежнем уровне – только уже не из автомобильных выхлопных труб, а со станций генерации водорода. Существенным препятствием в создании чистых технологий производства водорода является их цена. Пока правительство не утвердит использование водорода в качестве основного топлива, или не увеличит в разы налоги на использование топлив на базе ископаемых энергоносителей, «эквивалент литра бензина» будет основным эталоном для водителей при принятии решения, какое топливо им покупать. А производство водорода из нефти, газа и угля на сегодняшний день является наиболее экономически оправданным методом.

Основной вклад нанотехнологий в «чистое» производство водорода заключается в том, что материалы, созданные с их помощью, могут использоваться в солнечных батареях. Также известны применения результатов нанотехнологических разработок в области катализаторов для процесса электролиза. Основные поиски сейчас нацелены на то, чтобы создать высокоэффективное устройство, которое можно заправить водой, выставить на солнце и получить водород без использования каких-либо внешних энергетических источников.

У солнечных батарей есть потенциал, который поможет воплотить эту идею в жизнь, однако пока мешает этому их низкая эффективность и, наоборот, слишком высокая цена. Правда, похоже, что солнечная энергетика не может покрыть все потребности в обеспечении станций генерации водорода нужным количеством энергии. Если представить, что вся солнечная энергия будет без потерь запасаться в топливные ячейки, то даже при этом условии получаются результаты, которые вряд ли удовлетворят потребителей энергии.

Статистика утверждает, что мировое потребление энергии в 2004 году составило около 404 квадриллионов британских тепловых единиц, или 427,4 млрд. ГДж. С одного квадратного метра поверхности можно в среднем получить 250 Вт за 1 секунду. Для выработки требуемого количества энергии потребуется площадь солнечных батарей в размере 95 млн. кв.км., что составляет около 2/3 всей поверхности суши планеты. А по прогнозу, потребление энергии к 2025 вырастет более чем в 1,5 раза – и тогда придется покрыть почти всю поверхность суши солнечными батареями.

Таким образом, вопрос повышения КПД выходит на первый план. Есть два основных типа солнечных батарей. Один из них производит водород напрямую посредством электрохимического процесса, преобразовывающего солнечную энергию в химическую. Для повышения КПД этого типа батарей существует материал с наноразмерными электродами, который увеличивает отношение поверхности к объему и тем самым повышает эффективность установки.

Другой тип солнечных батарей – фотоэлектрический. С помощью установок этого типа получаемое электричество может направляться на производство водорода путем электролиза воды. Эксперименты с массивами нанопроводов и другими наноструктурными материалами показали, что их применение может увеличить эффективность и таких батарей.

Не вдаваясь в детали, можно сказать, что нанотехнологии в будущем сыграют значительную роль в разработке высокоэффективных типов солнечных батарей, требующихся для создания жизнеспособной альтернативы добыче водорода при помощи ископаемых энергоносителей.

Проблема хранения водорода

Следующая важная задача – это задача хранения водорода. Хранение водорода на борту автомобиля в количестве, необходимом для передвижения, представляет собой серьезный вызов инженерам. По самым грубым подсчетам, для перемещения на расстояние в 100 км требуется около 1 кг водорода. Это значит, что необходимо возить в баке около 5 кг водорода, чтобы иметь возможность покрыть средний дневной пробег. Плотность водорода составляет 0,1 грамма на литр объема при комнатной температуре, следовательно, потребуется разместить 50 тыс. литров водорода в баке.

Есть три способа хранения такого объема: в виде сжатого газа с высокой степенью компрессии, в качестве жидкости (что требует сильного охлаждения), или в твердом виде.

Первый способ использовался в ранних моделях автомобилей, работающих на водороде. Конструкторы разных автомобильных платформ пытаются создать хранилища, которые бы соответствовали техническим требованиям, и при этом имели бы приемлемую цену, но пока рано говорить о каких-то значительных подвижках в данной области.

В прошлом году автомобильная компания Honda анонсировала концепт-кар FCX, который может хранить на борту 5 кг водорода при давлении около 350 кг/см2, причем его бак имеет размеры, позволяющие разместить его на автомобиле средних габаритов.

Использовать давление в десятки килограммов на кв. см. для хранения сжатого водорода, или охлаждение в до минус 252 градусов Цельсия для превращения его в жидкость представляет определенную угрозу безопасности потребителей. В этом свете подходящим альтернативным способом является хранение водорода в виде металлогидридов в хранилище, основанном на принципах адсорбции. В такой емкости водород впитывается во внутренние поверхности пористого материала, и может высвобождаться при помощи тепла, электричества или химической реакции. Известно довольно много металлов, которые могут выступать в качестве наполнителя, способного запасать водород.

Нанотехнологии и здесь могут помочь в решении таких задач. Методы, используемые при создании наноматериалов, позволяют управлять физическими характеристиками получаемых композитов. Это дает возможность формировать удерживающие эффекты нужной силы и получать большое соотношение площади поверхности адсорбента к его объему.

Подобные свойства полезны для разработки наполнителей для хранилищ водорода «третьего типа» - на базе адсорбции. Например, исследователи сейчас изучают свойства полимерных наноструктурированных материалов с целью разработки нового типа адсорбентов для хранилищ водорода. На сегодняшний день идет предварительное тестирование новых материалов, и результаты испытаний выглядят вполне обнадеживающими.

Одностенные углеродные нанотрубки обладают большой поверхностной площадью и при этом имеют относительно малую массу. Эти характеристики нанотрубок, согласно общему убеждению, позволяют считать их одним из наиболее перспективных материалов для создания хранилищ водорода большой вместимости.

Теоретически, в таком хранилище может быть запасено около 7,7 массового процента, поскольку хемосорбция такого материала очень велика: на каждый атом углерода в нанотрубке возможно адсорбировать один атом водорода. В дополнение, последующая физическая адсорбция увеличивает вместимость хранилища еще больше. Так или иначе, некоторый скепсис в отношении хранилищ водорода на базе углеродных наонтрубок был обусловлен ошибками ранних, экспериментальных, стадий и разумная основа для разработки хранилищ водорода высокой вместимости уже заложена.

Создание эффективных топливных ячеек

Теперь перейдем к последней задаче. Это создание эффективных топливных ячеек, в которых химическая энергия водорода будет преобразовываться в кинетическую энергию движения с высоким КПД. Топливные ячейки, в принципе, являются зеркальным отображением батарей электролиза. В последних за счет воздействия электричества происходит разделение молекул воды на водород и кислород, а в топливных ячейках соединение водорода с кислородом производит электричество.

Главным препятствием для массового выпуска автомобилей на базе топливных ячеек сейчас является цена такого автомобиля. Стоимость топливной ячейки сейчас колеблется между $1 тыс. и $3 тыс. за киловатт установленной мощности. Чтобы выдержать конкуренцию с обычными автомобилями, использующими двигатели внутреннего сгорания, эта цифра должна снизиться более чем в 30 раз – до $30.

Существует несколько различных типов топливных ячеек, но кандидат номер один на применение в автомобилях – ячейки на основе полимерных электролитических мембран, также называемых «мембранами протонного обмена».

И установки электролиза, и топливные ячейки используют для работы дорогие платиновые электроды. Исследователи работают в двух направлениях снижения цены: минимизировать использование платины путем повышения каталитической отдачи через структуризацию катализаторов на наноуровне. Другое направление разработок ставит целью вообще исключить дорогие платиновые катализаторы, заменив их каким-нибудь другим катализатором, в котором наноструктурированная поверхность будет иметь те же каталитические свойства при более низкой цене.

Нанотехнологии непременно сыграют главную роль в будущей водородной экономике. вопрос только в том, когда эта экономика перейдет с генерации водорода из ископаемых энергоносителей на возобновляемые источники энергии. Судя по всему, это случится никак не раньше 2020 года.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Применение нанотехнологий

Наноспирали оксида кремния

News image

Во многих научных журналах публикуются статьи, в которых учёные синтезируют и описывают всё новые и но...

Новый материал увеличит емкость чипов па

News image

Ученые из университета Северной Каролины создали композитный материал, который позволит радикально увеличить емкость компьютерных чипов па...

Нано-цирконийполикарбосилан — прорыв в п

News image

Нано-цирконийполикарбосилан (HZrПКС) — предкерамический полимер для получения высокопрочной жаростойкой бескислородной композиционной керамики, обладающей стабилизированной структурой. Но...

Солнечные зайчики вместо нефти

News image

Большинство физиков, работающих над созданием альтернативы продуктам переработки нефти, солидарны в том, что нефть можно заменить солн...

Нанотехнологии и закон

News image

Хотя в макроэкономике имеются некоторые сбои, сектор нанотехнологии продолжает свой подъем. В ближайшие пять лет ожид...

Новые исследования подтвердили токсичнос

News image

Инженерные нанотехнологии всё чаще становятся частью нашей повседневной жизни в форме косметики, упаковки продуктов питания, си...

В России появится принципиально новая на

News image

В России появится принципиально новая наука на основе нанотехнологий, биотехнологий, информационных технологий, специально ориентированных на ра...

Волокнисто игольчатый композит

News image

Текстильный материал черного цвета состоящий из случайно орентированых углеродних волокон и нитевидных кристалов. Электропроводен, стойкий к ...

Новости нанотехнологий

Кремниевые нанотрубки выращивают без применения золота

Кремниевые нанопроволоки помогут уменьшить размеры микрочипов. Ученые из Института Физики микроструктур Макса Планка в Галле впервые разработали нанопроволоки на кре...

Казавшаяся трудноразрешимой задача придания изделиям из

Казавшаяся трудноразрешимой задача придания изделиям из графена желаемой формы оказалась подвластна капелькам воды – о пластичности графеновых наноструктур сообщают химики из...

Влияние полярности электрического поля на рост вертикал

Одно из наиболее перспективных направлений использования углеродных нанотрубок (УНТ) связано с разработкой холодных полевых эмиттеров на их основе. Уникальные особенности та...

Наноальтернатива таблеткам

  Одним из первых медицинских применений нанотехнологии стало разработанное учеными из США быстродействующее лекарство от импотенции, которое сможет соперничать таблетками Частицы препарата ...

Композиты медицинские «MBM — ЛН»

Справка о применении в клинической практике композитного материала «MBM — ЛН» Композитный материал «MBM — ЛН» представляет собой ткань черного цвета. Развитая по...

More in: Технологии, Наноматериалы, Наномедицина, НаноТехника , Новости

Популярные заметки:

Космический лифт и нанотехнологии

От фантастики к реальности КОСМИЧЕСКИЙ ЛИФТ - это лента, один конец которой присоединен к поверхности Земли, а другой находится на...

Бактерии приводят в движение крошечные наномеханизмы

Шестерни в миллион раз более массивные, чем бактерии , говорит главный исследователь Игорь Аронсон. Возможность использовать и контролировать эне...

Нанотрубки научились получать в промышленных масштабах

Углеродные нанотрубки, основу для сверхпрочных материалов, можно будет получать в промышленных масштабах: благодаря изобретению американских химиков их стоимость заметно снизится. Нанотрубка – ...

Создан первый серийный прибор на органических транзисто

На очередной выставке бытовой электроники CES 2010 в Лас-Вегасе компания Plastic Logic продемонстрировала свою новую разработку – QUE proReader. Это ус...

Создана новая сверхзвуковая технология!

Совместная группа австралийских и американских инженеров успешно протестировала новую сверхзвуковую авиационную технологию, которая, как уверяют ее разработчики, способна полностью изменить по...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.