News image News image News image News image News image News image News image News image


Наносенсоры внутри астронавтов предупредят о космической радиации
Нанотехнологии как наука - Нанотехнологии в космонавтике

наносенсоры внутри астронавтов предупредят о космической радиации

Пока это лишь сделанная на компьютере картинка, однако наночастицы-биосенсоры, по словам учёных, будут выглядеть примерно так (иллюстрация с сайта physorg.com).

Наночастица, она же - перекати-поле, будет постепенно выстраиваться вокруг ядра (


NASA хочет кое-что разместить внутри своих астронавтов. Причём это кое-что настолько крошечное, что будет находиться в живых клетках покорителей космоса. И тогда клетки астронавтов будут предупреждать своих хозяев о том, что их здоровье в опасности. Для этого нужны лишь биосенсоры размером с молекулу.

А ведь действительно, как хорошо бы было, если б клетки нашего организма сигнализировали о заболевании до появления видимых его признаков. К примеру, микроскопическая опухоль, едва начавшая расти, в принципе безопасна - только вот мы о ней не знаем, клетки молчат.

Вот аэрокосмическое агентство США и предложило учёным разговорить их с помощью нанотехнологий.

Вкратце идея звучит просто: наночастицы-датчики внедряются внутрь клеток и при появлении признаков неприятностей, например, вторжении вируса, начинают светиться - этот сигнал улавливают приборы.

Разумеется, на финансирование этих исследований NASA сподвиг не интерес к здравоохранению в целом, а решение собственной проблемы - необходимостью борьбы с космической радиацией, одним из главных препятствий на пути осуществления пилотируемой миссии на Марс.

Абсолютной защиты астронавтов от излучения во время 6-месячного путешествия на Красную планету придумать пока не удалось. Однако поиск способов контроля, предотвращения и восстановления после воздействия радиации ведётся усиленно.

Недавно грант от NASA был получен Центром биологической нанотехнологии университета Мичигана (Center for Biologic Nanotechnology - CBN), директор которого Джеймс Бейкер (James Baker) считает, что наночастицы - это как раз то, что нужно.

В идеале наноборьба с космическим излучением будет вестись так. Перед стартом астронавт использует шприц для подкожных инъекций, чтобы ввести в кровоток прозрачную жидкость, насыщенную миллионами наночастиц.

На время полёта он вставляет в своё ухо маленькое устройство, наподобие слухового аппарата. В течение миссии приборчик использует крошечный лазер для поиска светящихся тревожным светом клеток - это становится возможным, поскольку клетки текут по капиллярам барабанной перепонки.

По беспроводной связи данные мониторинга клеток передаются на главный компьютер космического корабля для последующей обработки. Чуть что - и принимаются меры.

Вышеописанный сценарий может воплотиться в жизнь, по крайней мере, через 5-10 лет, но некоторые детали уже сегодня обретают форму в лаборатории CBN.

Так, в самих наночастицах для учёных нет ничего нового, они используют их уже более 5 лет и успешно экспериментируют с ними на животных.

Специфический вид наночастиц, который используют Бейкер и его коллеги напоминает перекати-поле - это шарообразная связка прутиков , растущих из центральной точки. Учёные называют эти инертные частицы dendrimers , так как основаны они на древовидных полимерах.

Они служат платформой для строительства биосенсора. Свободные концы прутиков обеспечивают для желающих закрепиться молекул 128 мест.

Эти молекулы, обнаруживая признаки лучевого повреждения, и выкидывают флуоресцентный красный флаг . То есть получается такой 128-молекульный индикатор.

Только вот учёные хотят, чтобы к перекати-поле присоединялись наиболее полезные молекулы, а сами биосенсоры попадали в клетки, особенно чувствительные к радиации. Группа Бейкера в этом смысле нацеливается на белые кровяные клетки - лимфоциты.

Однако, находясь в них, наночастицы должны иметь возможность передать сигнал о повреждениях, так сказать, во внешний мир.

Один из путей состоит в том, чтобы наблюдать за приготовлениями клетки к самоликвидации, ведь лимфоциты действительно совершают самоубийство (апоптозис), когда повреждены радиацией.

Исследователи обнаружили, что можно приложить к наносенсору флуоресцентно окрашенную молекулу, которая реагирует на ферменты самоубийства . Таким образом, суицидальные лимфоциты могут светиться.

Но ведь и пылающие клетки тоже нужно суметь заметить. Специально разработанная лазерная система уже показала, что может идентифицировать тревожные сигналы в кровотоке мыши, когда клетки проходят через капилляры в её ухе.

Тем не менее, говорить о применимости технологии в её нынешнем виде для космической миссии пока ещё слишком рано. Для астронавтов, возможно, нужно будет объединить микролазер с подобным слуховому аппарату прибором.

Тогда и удастся осуществлять контроль над клетками в кровотоке астронавта в реальном времени, и никакого другого оборудования для этого не потребуется.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Применение нанотехнологий

Что такое композитные материалы

News image

Многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и ...

«Папа всех бомб»: избирательные нанотехн

News image

По мнению экспертов, испытание нового оружия – продолжение пиар-политики силового блока и первого вице-премьера Сергея Ив...

Genepax, Япония. Автомобиль, которые езд

News image

Компания Genepax из японского города Осака 12-го июня этого года представила автомобиль, который использует в ка...

Новый вид утилизации отходов: старые пла

News image

Большинство из покупателей даже не задумывается над тем, куда деть отработавшие свое пластиковые пакеты из бл...

Сверхполиэтилен

News image

Кризис — хорошее время, чтобы избавиться от старого производства на устаревшем оборудовании и при наличии ср...

Терагерцовый сканер для авиапассажиров -

News image

США и Европа все еще не оправились от шока, вызванного попыткой теракта в американском авиалайнере, вы...

Прозрачный металл указывает на природу я

News image

Прозрачный алюминий, научно-фантастический материал, оказывается, всё-таки существует – если смотреть через рентгеновские лучи. Для создания экзотического со...

Наноспирали оксида кремния

News image

Во многих научных журналах публикуются статьи, в которых учёные синтезируют и описывают всё новые и но...

Новости нанотехнологий

Кремниевые нанотрубки выращивают без применения золота

Кремниевые нанопроволоки помогут уменьшить размеры микрочипов. Ученые из Института Физики микроструктур Макса Планка в Галле впервые разработали нанопроволоки на кре...

Казавшаяся трудноразрешимой задача придания изделиям из

Казавшаяся трудноразрешимой задача придания изделиям из графена желаемой формы оказалась подвластна капелькам воды – о пластичности графеновых наноструктур сообщают химики из...

Влияние полярности электрического поля на рост вертикал

Одно из наиболее перспективных направлений использования углеродных нанотрубок (УНТ) связано с разработкой холодных полевых эмиттеров на их основе. Уникальные особенности та...

Наноальтернатива таблеткам

  Одним из первых медицинских применений нанотехнологии стало разработанное учеными из США быстродействующее лекарство от импотенции, которое сможет соперничать таблетками Частицы препарата ...

Композиты медицинские «MBM — ЛН»

Справка о применении в клинической практике композитного материала «MBM — ЛН» Композитный материал «MBM — ЛН» представляет собой ткань черного цвета. Развитая по...

More in: Технологии, Наноматериалы, Наномедицина, НаноТехника , Новости

Популярные заметки:

Космический лифт и нанотехнологии

От фантастики к реальности КОСМИЧЕСКИЙ ЛИФТ - это лента, один конец которой присоединен к поверхности Земли, а другой находится на...

Ученые Северной Каролины разрабатывают гибкие антенны

Антенны не только для того, чтобы слушать радио. Они используются во всем, начиная с сотовых телефонов и заканчивая GPS. Исследование го...

Бактерии приводят в движение крошечные наномеханизмы

Шестерни в миллион раз более массивные, чем бактерии , говорит главный исследователь Игорь Аронсон. Возможность использовать и контролировать эне...

Переход через наноАльпы

Готовится к старту самый крупный в России бизнес-проект производства светотехники нового поколения. Без него российский рынок сверхъярких светодиодов будет наполнять до...

Распыляемые фотоэлементы заряжают энергией практически

Громоздкие и дорогие фотоэлектрические панели уже в прошлом. Что готовит нам будущее? На целые здания, крыши и даже окна распыляются революционные че...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.