Радуга света | |
Новости и технологии - Наноматериалы |
Органический светодиод – ОСИД – это сэндвич толщиной около 100 нм, где при приложении электрического тока происходит инжекция в эмиссионный слой носителей заряда, их рекомбинация и излучение света (РИС. 1). При этом внешняя – наблюдаемая – квантовая эффективность работы устройства (ФEL) зависит не только от эффективности фотолюминесценции эмиттера (ФPL), но и от эффективности рекомбинации электрона и дырки (nr), а также эффективности выхода света из устройства (ne), которая обычно составляет 0.2: ФEL=ФPLnrne. Сегодня удается достичь эффективности рекомбинации 1.0, но насколько высокой может быть эффективность фотолюминесценции? Теоретический предел этой величины, в первую очередь, зависит от механизма люминесценции эмиттера. По механизму люминесцирующие материалы делятся на флуоресцирующие, люминесценция в которых происходит с синглетного уровня, и фосфоресцирующие, которые люминесцируют за счет триплетного уровня (РИС. 2, а). Поскольку на синглетный уровень может попасть только 25% возбуждения, флуоресцирующие материалы имеют предел ФPL=25%. Фосфоресцирующие же материалы могут достигать квантового выхода 75%, а в случае возможности внутримолекулярного переноса синглет-триплет (ISC) – даже 100%. Реально же эффективность люминесценции таких соединений определяется соотношением коэффициентов излучательной и безызлучательной дезактивации: ФPL=kr/(kr+knr(РИС. 2, б). Но, несмотря на то, что для достижения высокого ФPL должно быть kr>>knr, на практике knr оказывается на 3 порядка меньше. Один из способов повышения kr – это спин-орбитальное связывание, которое, в свою очередь, усиливается при введении в структуру тяжелых атомов, таких как рутений и золото. Однако для увеличения эффектиности мало просто ввести металл в комплекс – его орбитали должны участвовать в люминесценции. Например, комплекс золота, приведенный на РИС. 3, имеет квантовый выход люминесценции ФPL=0.022 - меньший, чем у часто используемого Ru(bpy)32+(ФPL=0.062), вклад орбиталей металла в котором существенно больше. Квантовый выход люминесценции в комплексе иридия Ir(ppy)3 достигает 97%, что определяется большим вкладом металла в НОМО (РИС. 4). После синтеза этого соединения число публикаций на тему ОСИД на его основе росло экспоненциально. Но одного зеленого цвета мало. Как же можно изменить длину волны люминесценции? Изменяя расстояние между НОМО и LUMO, то есть: В случае, когда DE1/2<3LC (триплетный уровень лиганда) (РИС. 5, а), люминесценция определяется именно уровнем 3MLCT (триплетный уровень металл-лиганд). Так, введение в ppz2Ir(N^N)+электрон-акцепторных фторижных групп понижает энергию НОМО и смещает люминесценцию в синюю область. Наоборот, электрон-донорные группы повышают НОМО и приводят к оранжевой люминесценции. Замена лиганда bpi на biquin, наоборот, понижает LUMO – и мы имеем красную люминесценцию. Если же, наоборот, DE1/2>3LC (РИС. 5, б), люминесценция будет орпределяться разницей 3MLCT-LC. Эту энергию можно изменять, заменяя сам C^N лиганд. Среди соединений, полученных таким образом, уже найдено множество внутренним выходом 100%, а эффективность устройства на их основе достигает 20% - на данный момент теоретического предела! Остается вопрос синей люминесценции. Длина волны 460 нм для Ir(4,6-F2ppy)3 или 468 для (tpy)IrIr(P^P) все еще велика. Для того, чтобы сместиться еще более влево, можно: Но можно выбрать и другой путь – изменить ключевой гетероцикл. Например, комплекс Ir(ppz)3 при 77 К обладает люминесценцией с максимумом около 400 нм! (РИС. 7) Но вот беда: при комнатной температуре люминесценция отсутствует совсем! Причина этого в том, что при повышении температуры происходит гашение люминесценции. Это вызвано наличием дополнительного уровня энергии, переход на который возможен только при температуре, когда kT~DE, и релаксация с которого безызлучательна. Чтобы этого избежать, можно (РИС. 8): Чтобы пойти по первому пути, достаточно снова начать вводить электрон-акцепторные группы, однако это приведет к смещению длины волны излучения в низкоэнергетическую область, то есть люминесценция перестанет быть синей. Однако оказывается, что, как и во многих других химических процессах, переход на уровень-гаситель происходит через энергетический барьер (РИС. 9). Таким образом, достаточно повысить необходимую энергию активации. И действительно, квантовый выход люминесценции непосредственно зависит от разницы между уровнем Т1 и ЕА(РИС. 10). Иногда оказывается проще поднять уровень-гаситель, и для этого нужно отказаться от лигандов (C^N), перейдя к лигандам (С^С): прочная связь С-М приведет к повышению триплетного уровня-гасителя3LF, а кроме того повысит энергию триплетного уровня, приведя к смещению люминесценции в синюю область. Такой переход уже был осуществлен, и результатом стал комплекс Ir(pmb)3 (РИС. 11), обладающий интенсивной люминесценцией даже при комнатной температуре с максимумом около 400 нм. Его квантовый выход – 37% – оставляет простор для дальнейшей работы, но первый шаг уже сделан. Статья основана на лекции, прочитанной проф. П. Джуровичем на летней школе по органичесой оптоэлектронике в г. Крутине, Польша, в 2010 году. |
Читайте: |
---|