Инженеры в области биомедицины постоянно работают над возможностью усовершенствования пластиковых, титановых и керамических биопротезов, но живые ткани организма иногда отторгают имплантаты. Инженеры из университетов Брауна и Пердью (Brown and Purdue Universities) пришли к выводу, что простое изменение поверхностной текстуры имплантатов может резко изменить характер покрытия их живыми клетками.
Проведенные исследователями эксперименты были сосредоточены на материалах, используемых в стентах (stent - эндопротез сосуда) - эластичных маленьких трубках, которые поддерживают открытыми некогда закупоренные артерии, - и в искусственных кровеносных сосудах. В настоящее время только около 30% имплантатов кровеносных сосудов малых диаметров (менее 6 мм) имеют срок службы более пяти лет, при этом более 20% стентов нуждаются в замене из-за уширения артериальных стенок вокруг них в результате процесса, названного рестенозом (это повторное сужение просвета какого-либо органа после его расширения оперативным путем). Как один из способов борьбы с этим недостатком несколько лет назад были использованы стенты c лекарственным покрытием, но окончательно проблема с уплотнениями в окружающих тканях не была решена.
Вместо использования химических методов противодействия ответным реакциям организма на такие инородные материалы Томас Уэбстер (Thomas Webster) и Карен Хаберштро (Karen Haberstroh) пошли по другому пути решения этой проблемы. Их идея состоит в том, чтобы изготавливать имплантаты из тех материалов, поверхность которых имеет физическую структуру, позволяющую им лучше вживляться в органические ткани.
Здоровые кровеносные сосуды имеют тонкую внутреннюю поверхностную ткань из особых клеток, называемую эндотелием, окруженную толстым слоем клеток гладкой мускулатуры, которые и составляют основу сосудистых стенок. Такие белки, как коллаген и эластин, составляют значительную часть этой внутренней оболочки и создают текстуру из правильных наноразмерных неровностей на внутренней поверхности кровеносных сосудов. Это совершено нехарактерно для большинства материалов, из которых изготавливаются имплантаты, обладающие текстурой на микроуровне, пусть и близкой к наноразмерной.
Когда исследователи изменили текстуру поверхности материала имплантата с тем, чтобы она в большей степени соответствовала рельефу эндотелия, они обнаружили, что клетки эндотелия быстрее приживались на инородной поверхности, эффективно маскируя её и опережая рост клеток гладкой мускулатуры на поверхности имплантата. Клетки эндотелия образовали единый твердый слой, и их деление на этом остановилось. Затем они перешли к накоплению белков коллагена и эластина.
В одном из экспериментов, опубликованном в журнале Tissue Engineering, Вебстер и Хаберштро, спрессовывая титановые частицы, диаметр которых составлял менее 1 мкм, создали титан с наноразмерной текстурой поверхности. При сравнении образцов наноструктурированого материала и обычного титана, на которые были высажены клеточные культуры, они обнаружили, что наноразмерная поверхность стимулирует рост клеток эндотелия. Когда клетки эндотелия покрыли всю поверхность материала, они образовали единый тонкий слой, который препятствовал процессу чрезмерного разрастания клеток гладкой мускулатуры, являющегося причиной повторного сужения стентованных артерий.
В ходе другого эксперимента, результаты которого были опубликованны в Journal of Biomedical Materials Research, спрессовывались частицы сополимера молочной и гликолевой кислот (polylactic-co-glycolic acid или PLGA), материала, разлагаемого микроорганизмами и часто используемого для изготовления трансплантатов кровеносных сосудов. Образованный таким образом материал имел гладкую поверхность, сплошь покрытую углублениями 100, 200 и 500 нанометров в диаметре. Поверхность с 200-нанометровыми углублениями энергично способствовала адсорбции и распространению фибронектина, белка, который помогает клеткам эндотелия быстро покрывать имплантат.
Уэбстер и Хаберштро уже рассматривают возможность проведения опытов с подобными наноструктурированными имплантатами на животных. Если на имплантатах, помещенных в организм, будут получены схожие результаты, то тогда становится возможным производство материалов, быстро приживающихся к кровеносным сосудам и вызывающих меньшее количество реакций отторжения со стороны иммунной системы.
|