News image News image News image News image News image News image News image News image

Нанотехнологии на основе эффекта лотоса в автомобильной промышленности
Нанотехнологии как наука - Нанотехнологии в автомобилестроении

нанотехнологии на основе  эффекта лотоса  в автомобильной промышленности

В середине 70-х годов прошлого века немецкими учеными-ботаниками Боннского университета Вильгельмом Бартхлоттом (WilhelmBarthlott) и Кристофом Найнуйсом (ChristophNeinhuis) было открыто явление самоочистки листьев и цветков некоторых растений, а также тот факт, что этот феномен объясняется особым наноструктурированным состоянием их поверхности. Впоследствии это явление ими было запатентовано и названо в честь наиболее яркого представителя таких растений – Lotus-effect® (эффект лотоса).

Издревле цветок лотоса (лат.Nelumbo nucifera) считается в буддизме символом незапятнанной чистоты, так как известно, что листья и нежно-розовые или синеватые цветки лотоса остаются даже в грязной тине водоемов безупречно чистыми.

Явление самоочистки детально исследовалось учеными и позволило открыть удивительные возможности природы защищаться не только от грязи, но также и от различных микроорганизмов. Данный эффект наблюдается не только у лотоса, но и у других растений (листья кактуса, капусты, камыша, водосбора, тюльпана), а также у насекомых (например, крылья стрекоз и бабочек). Они наделены природой свойством защиты от различных загрязнений, в большей степени неорганического (пыль, сажа), а также биологического происхождения (споры грибков, микробов, водоросли и т.д.).

С помощью электронных микроскопов исследователями было обнаружено, что листья и цветки некоторых растений выделяют воскоподобное вещество кутин, представляющее собой смесь высших жирных кислот и их эфиров, которые образуют на поверхности особую структуру (нанорельеф) в виде «шипов» (рис. 2).

Взаимодействия между твердыми телами и окружающей средой происходят почти исключительно в поверхностных слоях, что справедливо также и для многих биологических систем. Биологические поверхности, созданные за миллионы лет в результате эволюции, являются максимально оптимизированными мультифункциональными системами. Они обеспечивают механическую стабильность, терморегулирование, контроль водно-солевого обмена и т.д. Постоянное загрязнение листьев растений нарушает в них многие биологические процессы, поэтому растения выработали специфический механизм защиты в виде «эффекта лотоса».

Лотос-эффект не является каким-то случайным феноменом, он возник в результате эволюции и вызван необходимостью выживания растений. Он предотвращает появление патогенных субстанций на таких поверхностях: споры легко смываются при каждом дожде, а при отсутствии дождя нет и влаги как условия для жизнедеятельности, размножения и паразитирования спор. На «оптимизированных» поверхностях (например, листке или цветке лотоса) проявляются супергидрофобные качества, такие, что, например, мед и даже клей на водной основе не прилипают, а полностью стекают с такой поверхности.

Степень увлажнения твердого тела описывается с помощью контактного угла α, входящего в формулу с поверхностной энергией σ на различных межфазных границах в соответствии с законом Кассье:

cos α = (σт–г – σт–ж ) / σж–г, где σт–г – «твердое тело – газ»; σт–ж – «твердое тело – жидкость»; σж–г – «жидкость – газ».

Нулевой контактный угол обеспечивает полное увлажнение (супергидрофильная поверхность), при котором капля воды стремится «растянуться» до состояния мономолекулярной пленки на поверхности твердого тела. Контактный угол 180° указывает на совершенную несмачиваемость (супергидрофобную поверхность), так как капля касается поверхности только в одной точке (рис. 3).

Попавшая на поверхность листа капля воды удаляет с него частицу загрязнений. При этом частицы загрязнений не проникают во внутреннюю часть капли, а равномерно распределяются по ее поверхности, т. е. даже гидрофобная субстанция удаляется каплей воды с гидрофобной поверхности. При рассмотрении условий, при которых реализуется «эффект лотоса» на наноуровне, механизм этого явления становится более понятным. С помощью закона Кассье можно объяснить, почему значение контактного угла для поверхности, а, следовательно, условие несмачиваемости (самоочистки) можно легко изменить, придав поверхности необходимый, в данном случае, наноразмерный рельеф.

Представим массажную щетку, на зубьях которой лежит клочок бумаги, изображающий частицу загрязнений. Пятно «грязи» расположено только на самых вершинах зубьев, не соприкасаясь с самой поверхностью щетки (см. рис. 4 справа). Сила адгезии (прилипания) «грязи» обусловлена площадью поверхности взаимного контакта. Если бы поверхность была гладкой или имела макрорельеф, как на рис. 4 (слева), то площадь контакта оказалась бы значительной и грязь удерживалась бы достаточно прочно. Однако из-за острых концов зубьев площадь контакта минимальна, и «грязь» как бы «висит на ножке». То же происходит и с каплей воды. Она не может «растечься» по остриям и поэтому стремится свернуться в шарик (см. рис. 4. слева).

Аналогичное явление происходит с различными видами загрязнений и на восковых ворсинках, покрывающих листья лотоса. Поверхность соприкосновения загрязнений с поверхностью листа также крайне незначительна и силы сцепления между каплей воды и частицей грязи оказываются значительно более высокими, чем между этой же частицей и восковым слоем листа. У загрязнения поэтому имеются две возможности: либо продолжать неустойчиво балансировать на шипах, либо «слиться» с гладкой ровной поверхностью движущейся водной капли и легко удалиться даже небольшим количеством воды, оставляя за собой чистую сухую поверхность.

Защитные водоотталкивающие свойства оперения водоплавающих птиц в основном обусловлены их особой ребристой структурой, а не наличием на перьях защитных жироподобных веществ, тогда как в случае с поверхностью листа лотоса, эти свойства только дополняют друг друга. Известные многим своими возможностями легкого перемещения (скольжения) по поверхности воды, водяные клопы-водомерки (лат.Gerridae) также используют это природное явление, так как их тело и кончики ног покрыты не смачиваемыми в воде волосками, обеспечивающими, на первый взгляд, их столь удивительные способности.

Таким образом, лотос-эффект основан исключительно на известных физико-химических явлениях и не привязан только к живым системам; в силу этого самоочищающиеся поверхности технически можно воспроизвести для различных материалов и покрытий.

Именно поэтому в последнее время проводятся интенсивные исследования по разработке и производству самоочищающихся или устойчивых к загрязнению изделий и покрытий в самых различных отраслях экономики. При этом формирование заданной наноструктуры поверхности может быть выполнено с помощью нескольких основных методик:

Все они в той или иной мере могут быть отнесены к наноинженерии поверхности (лат. ingenium – врожденная способность, дарование, ум, изобретательность) – научно-практической деятельности человека по конструированию, изготовлению и применению наноразмерных объектов или структур (поверхностей) с заданными (прочностными, триботехническими, самоочищающимися и т.д.) свойствами либо аналогичных объектов или структур, созданных методами нанотехнологий.

Одна из основных проблем, которую еще предстоит решить, заключается в том, чтобы после формирования поверхности или нанесенные на них частицы, обладающие определенным распределением по размеру и структурой, оказались стабильными по отношению к старению и различным факторам воздействия окружающей среды. Например, ультрафиолетовое излучение может инициировать окисление покрытия, что приводит к гидрофилизации поверхности за счет образования кислородсодержащих групп.

Ученым удалось показать, что нанесение суспензий гидрофильных частиц оксида кремния размером несколько нанометров на твердые керамические поверхности может привести к самоорганизации наночастиц. Полученные в результате модифицирования поверхности обладают пониженным для гидрофильных жидкостей краевым углом смачивания, что улучшает сток жидкостей и увеличивает скорость высыхания после очистки.

Основываясь на этих и других принципах, в 1999 г. немецкая компания «Nanogate Technologies GmbH» из Саарбрюккена победила в конкурсе на разработку самоочищающегося покрытия для керамики «WunderGlass», объявленном концерном «Duravit AG». На выставке CEVISAMA-2000 в Испании был показан еще один продукт – покрытие для плитки «Sekcid», разработанное фирмой в результате стратегического партнерства с испанским концерном «Torrecid S.A.» – одним из мировых лидеров в сфере производства фритты (керамических сплавов) и глазурей для керамической промышленности.

Наиболее широкое распространение технологии на основе «эффекта лотоса» получили в автомобильной промышленности при нанесении лакокрасочных покрытий; специальной обработки остекления автомобиля; защитной водоотталкивающей и антибактериальной пропитке внутренней обивки и тентов; модифицировании резинотехнических изделий и т. п.

Внешний вид, качество и долговечность покрытия автомобиля, несомненно, является отражением технического состояния всего транспортного средства. Благодаря широкому диапазону свойств и эффектов достигаемых при помощи нанотехнологий, в том числе «эффекта лотоса», в настоящее время имеется возможность для обновления и защиты внешнего вида автомобилей при относительно низких затратах, что снижает расходы при эксплуатации и повышает рыночную стоимость при перепродаже.

Немецкая фирма «Дуалес Систем Дойчланд АГ» одной из первых представила на проходившей в Ганновере всемирной выставке «ЭКСПО-2000» новую краску для автомобилей, обладающую самоочищающимся эффектом, для их мойки (даже после сильного загрязнения) их просто достаточно полить водой.

Более того, в настоящее время имеются разработки на основе нанотехнологий, позволяющие вообще обходится без воды. На загрязненные поверхности автомобиля из баллона распыляется специальный состав, которой затем растирается салфеткой или полотенцем. В результате не только удаляются загрязнения, но и осуществляется нанесение защитного самоочищающегося покрытия, остающегося на поверхности более полугода.

Начиная с 2003 года легковые автомобили Mercedes-Benz серий E, S, CL, SL и SLK покрыты прозрачным лаком с наноразмерными (около 20 нм) керамическими частицами, созданными на основе нанотехнологии, которые в процессе высушивания в лакокрасочном цехе отвердевают, образуя на поверхности лакового покрытия чрезвычайно плотную сетчатую структуру. Благодаря этому также повышается прочность (износостойкость) лака и обеспечивается более интенсивный и долговечный блеск покрытия. Автомобили Mercedes-Benz с лакокрасочным покрытием на основе нанотехнологии отмечены наградой на специализированной выставке «Automechanika», как «самые легкомоющиеся автомобили 2004 года».

В настоящее время в области разработки и применения нанотехнологической продукции для автомобильной промышленности основная конкуренция развернулась между компаниями PPG, Dupont и Nanovere, а также BASF. Так, еще в 2002 году американская компания PPG Industries Inc. представила на автомобильном рынке первое керамическое самоочищающееся покрытие – CeramiClear® Clearcoat. Для самоочищающейся поверхности фирма использует диоксид титана (TiO2). Его свойства таковы, что покрытие из данного вещества не только окисляет и расщепляет грязь, но вдобавок нейтрализует различные запахи и убивает микроорганизмы. На практике это приводит к тому, что износоустойчивость лакового покрытия возрастает – оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40 % дольше, чем окрашенные обычной краской. Такому заключению предшествовали четыре года экспериментов и 150 окрашенных новой краской «тестовых» автомобилей.

Другим направлением использования нанотехнологий в автомобильном машиностроении является исключение экологически вредных красок, содержащих различные растворители, которые выбрасываются в атмосферу во время процесса сушки. Эти проблемы решаются за счет использования порошковых покрытий вместо традиционных жидких покрытий на водной основе, которые становятся все более распространенными, поскольку они не содержат летучих органических соединений. Как уверяют в компании DuPont еще в начале 1990-х годов они разработали принципиально новый экологически чистый порошковый материал на водной основе для покраски автомобиля. По словам разработчика, высыхание слоя такой краски при воздействии на него УФ-излучения не превышает десяти секунд.

В настоящее время компания PPG работает над самовосстанавливающимся лакокрасочным нанопокрытием, позволяющим осуществлять «саморемонт» царапин и мелких потертостей, возникающих при повседневной эксплуатации автомобиля.

Американская компания Nanovere старается не отставать от своих конкурентов и также разработала одновременно устойчивую к царапинам и самоочищающуюся краску под названием Zyvere 2K Nanocoating, которая уже была испытана на переднем бампере автомобиля Cadillac CTS-V, разгонявшегося на некоторых участках трека до 320 км/час, где показала очень хорошие результаты. Новое нанопокрытие из наночастиц диоксида кремния (SiO2) для кузовов автомобиля (может также применяться для окраски колесных дисков, самолетов или кораблей), как уверяют разработчики, на 53 % более стойкое к появлению царапин, и за счет самоочистки («эффекта лотоса») на 60 % – к образованию на нем различного рода загрязнений (грязь, пыль, масло, вода, лед).

Сохранить лакокрасочное покрытие кузова позволяют полироли и различные средства защиты. Особое место среди них занимают современнейшие разработки в области нанотехнологий, например, нанополироли для лакокрасочного покрытия и остекления автомобиля, в том числе реализующие «эффект лотоса». Автомобильная нанополироль, реализующая эффект лотоса– в большинстве случаев двухкомпонентный препарат, состоящий из подготовительной жидкости (растворителя) и собственно полироли, представляющий собой смесь частиц наноматериала (алмаз, оксиды титана, кремния, вольфрама и т.д.) в специальной среде из растворителей и наполнителей. Она предназначена для оптической маскировки локальных потертостей и царапин, восстановления первоначального цвета и свойств лакокрасочного покрытия или остекления автомобиля, а также придания им самоочищающихся свойств.

Например, защитная полироль «Pika rain», разработанная в 2008 году японскими учеными и представляемая на рынке компанией «Coral co., ltd», защищает автомобиль от царапин во время мойки, восстанавливает и сохраняет яркость и насыщенность цвета кузова. На поверхности кузова полироль образует защитную стеклоподобную пленку, которая надежно выдерживает действие различных кислот, грязи и обладает водоотталкивающими свойствами («эффектом лотоса»).

Гидрофобное покрытие для остекления автомобиля в виде пленок уже используется в автопроме при производстве серийных машин – оно наносилось на боковые стекла Nissan Terrano II. Подобное покрытие, хотя не создавало полноценного водоотталкивающего эффекта, но заметно уменьшало пятно контакта поверхности с каплями воды, благодаря чему во время дождя стекло оставалось достаточно прозрачным.

На рис. 5. представлен механизм «самоочищения» стекла автомобиля, обработанного специальными нанопленками или нанополиролями. Поверхность 1 модифицирована таким образом, что капля воды 2 катится по ней, собирая загрязнения 3, тогда как на гладкой поверхности, наоборот, капля воды, сползая, оставляет грязь на месте.

При применении таких покрытий дождь, снег и грязь не удерживаются на поверхности стекла, а уносятся встречным потоком воздуха, а попавшие на стекло битум, растительные смолы, масляная пленка, прилипшие насекомые и т.д. легко удаляются дворниками – даже в самых тяжелых случаях. Вода, снег и грязь, которые летят из-под колес встречного транспорта, попадая на боковые стекла, меньше сокращают боковой обзор. Ночная видимость становится существенно лучше, а встречный транспорт ослепляет гораздо меньше. В результате водоотталкивающего эффекта и более прозрачного стекла повышается активная безопасность на дороге. Одновременно снижаются расходы на новые стеклоочистители, т. к. в среднем они используются на 50 % реже.

В заключение следует отметить, что в настоящее время на основе «эффекта лотоса» разработан ряд специальных материалов и изделий, обладающих самоочищающимися и другими уникальными свойствами, например, гидрофобные фасадные краски, антивандальные покрытия поездов, незапотевающие зеркала и керамика, малозагрязнеющийся бактерицидный текстиль, непромокающие дождевые плащи и зонтики, водоотталкивающие спортивные купальные костюмы, а также многое другое. Все это свидетельствует о хороших перспективах применения нанотехнологий во многих сферах деятельности человека.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Применение нанотехнологий

Нанотехнологии на основе эффекта лотоса

News image

В середине 70-х годов прошлого века немецкими учеными-ботаниками Боннского университета Вильгельмом Бартхлоттом (WilhelmBarthlott) и Кристофом Найнуйсом (C...

Химики решили кормить автомобили водород

News image

Учёные наметили ещё один вариант обеспечения автомобилей энергией, который благоприятен с экологической точки зрения и ко...

Автомобили будущего. Нанотехнологии опре

News image

Автопромышленность стала одной из первых отраслей, где быстро поняли выгоду нанотехнологий. В автомобиле сложно изобрести чт...

Космические каскады. Трехкаскадные арсен

News image

В космических аппаратах применяют два вида солнечных батарей – кремниевые и арсенид-галлиевые на германиевой подложке. Пе...

Самовоспроизводящиеся материалы

News image

В природе организмы способны к воспроизводству, но человеку пока не удавалось создать искусственный материал, который мо...

Наземные солнечные фотоэлектрические уст

News image

Эффективное использование солнечной энергии в интересах широкого развития экологически чистой электроэнергетики возможно лишь в случае пр...

Аэрояхта - новый вид воздушного транспор

News image

Этот летательный аппарат развивает скорость до 200 км/час, может сесть на любое подходящее поле, взлетной по...

Нанобетон: мифы и реальность

News image

· В настоящее время, после того как с телеэкранов было объявлено о приоритетном развитии нанотехнологий, эт...

Новости нанотехнологий

Кремниевые нанотрубки выращивают без применения золота

Кремниевые нанопроволоки помогут уменьшить размеры микрочипов. Ученые из Института Физики микроструктур Макса Планка в Галле впервые разработали нанопроволоки на кре...

Казавшаяся трудноразрешимой задача придания изделиям из

Казавшаяся трудноразрешимой задача придания изделиям из графена желаемой формы оказалась подвластна капелькам воды – о пластичности графеновых наноструктур сообщают химики из...

Влияние полярности электрического поля на рост вертикал

Одно из наиболее перспективных направлений использования углеродных нанотрубок (УНТ) связано с разработкой холодных полевых эмиттеров на их основе. Уникальные особенности та...

Наноальтернатива таблеткам

  Одним из первых медицинских применений нанотехнологии стало разработанное учеными из США быстродействующее лекарство от импотенции, которое сможет соперничать таблетками Частицы препарата ...

Композиты медицинские «MBM — ЛН»

Справка о применении в клинической практике композитного материала «MBM — ЛН» Композитный материал «MBM — ЛН» представляет собой ткань черного цвета. Развитая по...

More in: Технологии, Наноматериалы, Наномедицина, НаноТехника , Новости

Популярные заметки:

Космический лифт и нанотехнологии

От фантастики к реальности КОСМИЧЕСКИЙ ЛИФТ - это лента, один конец которой присоединен к поверхности Земли, а другой находится на...

Бактерии приводят в движение крошечные наномеханизмы

Шестерни в миллион раз более массивные, чем бактерии , говорит главный исследователь Игорь Аронсон. Возможность использовать и контролировать эне...

Химический слой спасёт ваши носки от намокания

Практически любую поверхность или ткань можно сделать водонепроницаемой, но в то же время позволить ей дышать – благодаря бывшей военной те...

Кто вырастет: прямая нанотрубка, скрученная нанотрубка

Дело в том, что в результате приготовления образцов для просвечивающей электронной микроскопии они постоянно перемешиваются, и иногда бывает затруднительно определить в ...

Создан первый серийный прибор на органических транзисто

На очередной выставке бытовой электроники CES 2010 в Лас-Вегасе компания Plastic Logic продемонстрировала свою новую разработку – QUE proReader. Это ус...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.